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Abstract 
This study systematically reviews and compares techniques for detecting cascade 

behavior in social media networks, emphasizing their underlying modeling paradigms. We 

categorize these into five main approaches: feature-based methods, deep learning methods 
(including Graph Neural Networks), real-time diffusion analysis methods, point process-

based methods (particularly Hawkes processes), and hybrid methods. Feature-based 

techniques, while enabling popularity prediction, are limited by their reliance on domain 
expertise for feature engineering and static representations. Deep learning methods offer 

advantages in learning latent representations and capturing complex structural and sequential 

information without extensive feature engineering, but often face challenges with 

interpretability, computational cost, and handling imbalanced data. Real-time diffusion 
analysis excels in processing high-velocity data streams for immediate insights into 

unfolding cascades, crucial for rapid response applications, yet struggles with the inherent 

noise and complexity of real-world social data. Point process-based methods, especially 
Hawkes processes, are highly effective for modeling inter-dependent events over continuous 

time and capturing the “rich get richer” phenomenon in diffusion, although they can be 

limited by strong assumptions and difficulties in exploiting long-term dependencies. Hybrid 
methods combine the strengths of these individual techniques, enhancing accuracy and 

robustness by fusing complementary information modalities. The findings indicate an 

evolution towards deep learning integrations, such as Hawkes process-based networks and 

graph representation learning, promising improved handling of temporal dynamics and more 
precise predictions. Future research should prioritize scalable hybrid architectures 

incorporating continuous-time dynamic graph neural networks to enhance real-time cascade 

detection while maintaining interpretability and developing multi-task learning frameworks 
for comprehensive prediction and influence estimation. 
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Introduction 

The proliferation of online social media platforms has revolutionized information 
dissemination, enabling rapid and widespread sharing of content, ideas, and behaviors. This 

phenomenon has given rise to “cascade behavior,” where information or actions propagate 

through a network of connected individuals. The individuals are connecting through social 

ties, thereby forming the structural backbone for the emergence and propagation of cascade 
behavior in social media networks [1], [2]. A cascade effect in social networks refers to the 

sequential activation or adoption of an item (e.g., a piece of information, a trend, or a 

behavior) by individuals, where each adoption is influenced by previous adoptions within 
the network . This can be conceptualized as a directed graph where nodes represent users and 

edges represent relationships, with activation spreading from one user to their inactive 

neighbors [3]. Such cascades are often represented as rooted, directed, time-stamped trees 

that record the spread of a single diffusion event [4]. Information cascades are characterized 
by their temporal evolution, where the state of nodes changes over time from inactive to 

activated (e.g., retweeting a message) [5]. The structure of these cascades, which can include 

loops and reciprocal edges, provides valuable insights into the diffusion process [6]. These 
diffusion processes are ubiquitous in self-organized social systems, facilitating news 

propagation, the dissemination of innovative technologies, and even the spread of epidemics. 

The generation of cascade effects in social media is a complex interplay of various 
endogenous and exogenous factors. A fundamental mechanism involves users sharing 

content with their contacts, leading to a multiplicative spread that can reach a vast number 

of people, often distant from the original source [7]. This user-driven re-sharing can be 

triggered by social influence, where individuals are motivated by the actions of their peers, 
or by external influences such as burst events [8]. Some cascades exhibit a “broadcast” 

pattern, where a single node accounts for a large portion of the diffusion, akin to a breadth-

first search. In contrast, “viral” cascades are driven by word-of-mouth mechanisms, 
resembling a depth-first search, where each node contributes a smaller fraction to the overall 

spread [9]. Factors such as the content’s novelty, emotional appeal, and the characteristics of 

the spreading users (e.g., follower count, past engagement) significantly influence the 
likelihood and extent of a cascade [10], [11], [12]. The “diffusion protocols”—the social 

exchanges that enable information transmission—also play a crucial role in how cascades 

grow. These protocols can range from simple reshares to more complex interactions, with 

the effort required to participate impacting a cascade’s growth [13]. Network structure, along 
with nodal activity, has been shown to influence the cascade threshold and the spreading 

capacity of social media [14]. 
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Detecting cascade behavior in social networks is critical for a broad range of real-

world applications and holds significant importance in understanding online dynamics [8]. 

One primary application is the early detection of rumors and misinformation. Identifying 
viral rumors allows for crisis management and the implementation of mitigation strategies 

to prevent their widespread impact, especially when the information is false [15]. This is 

particularly relevant in scenarios like pandemics, where misinformation can hinder effective 
public health responses and cause widespread confusion [16]. Beyond mitigating negative 

impacts, cascade detection is vital for influence prediction, enabling the evaluation of 

information strategies and identification of content likely to achieve significant user 

engagement. This has direct applications in viral marketing and advertising, where 
understanding what makes content go viral can inform campaign design [8], [12]. Moreover, 

analyzing cascade patterns can provide insights into behavioral patterns and the propagation 

of ideas, which is valuable for areas like humanitarian efforts and public policy [12], [17]. 
The ability to predict cascade outcomes, such as their size and reach, can help in identifying 

hot information, optimizing resource allocation, and even minimizing destructive cascades 

or keeping them within specified ranges [6], [13], [18], [19]. The increasing scale and speed 

of information diffusion on social media make cascade prediction and detection an essential 
tool for navigating the complexities of the digital information landscape [4]. 

 

The cascade behaviour on social networks is detected by employing a variety of 
techniques, and each technique represents a distinct approach to modeling and identifying 

the propagation patterns of information diffusion across social networks. its essential to 

screen these techniques systematically to assess their efficacy, scalability, and applicability 
across diverse social media contexts, thereby enabling informed selection for specific 

detection scenarios.The present study was conducted to provide a comprehensive 

comparison of techniques employed for detecting cascade behavior on social media 

networks, with a particular emphasis on the role of diffusion protocols and multi-scale graph-
based approaches in capturing diverse propagation patterns. 

Objectives of Study 

The present study was conducted under following objectives; 
i. To examine the existing techniques for detecting cascade behavior in social 

networks. 

ii. To categorize the cascade detection techniques based on their underlying modeling 
paradigms, such as feature-based, graph neural network-driven, and real-time 

diffusion analysis approaches. 

iii. To provide the weakness of each technique in terms of computational efficiency, 

handling of temporal dynamics, and robustness to sparse network data. 

Research Methodology 

This study employs a secondary data-based research methodology, specifically a systematic 

literature review, to provide a comprehensive comparison of techniques utilized for detecting 
cascade behavior on social media networks. The initial phase involved a comprehensive 
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literature search across multiple academic databases to identify relevant studies focusing on 

cascade detection techniques in social media. Key databases included, but were not limited 

to, IEEE Xplore, ScienceDirect, Springer, ACM Digital Library, and Scopus, chosen for their 
extensive coverage of computer science, information systems, and social science research 

[20], [21], [22]. 

 
A carefully constructed search string was utilized, combining keywords and Boolean 

operators to maximize the retrieval of pertinent studies. The core keywords encompassed 

terms such as “information cascade,”“cascade detection,”“cascade prediction,”“social 

media,”“social networks,”“diffusion models,”“propagation,”“algorithms,”“techniques,” and 
“comparison.” The search was further refined by prioritizing recent publications to ensure 

currency, and restricting results to peer-reviewed journal articles and conference proceedings 

published in English[22]. Backward snowballing, wherein references from existing 
systematic reviews and highly cited papers were examined, was also employed to identify 

additional relevant primary studies. 

To ensure the relevance and quality of the selected literature, specific inclusion and exclusion 

criteria were applied during the screening process: 
● Inclusion Criteria: 

a) Studies presenting novel techniques or comparative analyses for detecting, 

predicting, or modeling information cascades in social media or online 
networks. 

b) Papers discussing the theoretical underpinnings, empirical evaluations, or 

practical applications of such techniques. 
c) Studies published in peer-reviewed journals, reputable conference 

proceedings, or as comprehensive survey articles (e.g., [8]). 

d) Research clearly defining the methodology, datasets used, and evaluation 

metrics for cascade detection or prediction. 
● Exclusion Criteria: 

a) Studies not directly related to cascade behavior or social media. 

b) Short papers, editorials, opinion pieces, or master’s/doctoral theses (unless 
they were subsequently published in a peer-reviewed venue). 

c) Studies primarily focused on general social network analysis without 

specific emphasis on cascade detection or prediction [23], [24]. 
d) Duplicate publications. 

From each selected study, relevant information was systematically extracted and recorded. 

This included: 

a) Bibliographic Details: Author(s), year of publication, title, and venue. 
b) Cascade Detection/Prediction Technique: Name, type (e.g., feature-driven, point 

process-based, deep learning-based), and underlying model [3]. 

c) Problem Addressed: Specific aspect of cascade behavior the technique aims to 
solve (e.g., early detection, size prediction, source identification). 
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d) Dataset Characteristics: Type of social media platform, size, and nature of the data 

(e.g., text, images, temporal information). 

e) Evaluation Metrics: Performance indicators used to assess the technique (e.g., 
accuracy, precision, recall, F1-score, AUC). 

f) Key Findings: Main results, advantages, and contributions of the technique. 

g) Limitations: Identified shortcomings, challenges, and areas for improvement. 
h) Comparative Aspects: If the paper included a comparison with other techniques, 

the details of that comparison. 

The extracted data underwent a rigorous analysis and synthesis process to fulfill the 

objectives of this chapter. A thematic analysis approach was employed to categorize and 
group similar techniques, identifying common themes, methodologies, and challenges [25]. 

A comparative analysis was then performed across the identified techniques, evaluating their 

efficacy, scalability, computational complexity, and applicability across diverse social media 
contexts and cascade types [26], [27], [28]. This involved assessing strengths and 

weaknesses, underlying assumptions, and suitability for different application scenarios (e.g., 

misinformation detection, trend prediction) [23], [29].  

Results 
The present review presents a systematic categorization of cascade detection 

techniques based on their underlying modeling paradigms, such as feature-based, graph 

neural network-driven, and real-time diffusion analysis approaches. In the following 
subsections the major techniques used for detecting cascade behavior in social media 

networks are described.  

4.1. Techniques used for detection of cascade behaviour in social networks.  

4.1.1. Feature Based Methods 

Feature-based methods operate by extracting specific, hand-crafted features from 

raw data associated with information cascades. These features can include structural 

properties of the cascade graph, temporal attributes (such as publication and observation 
times), characteristics of users, content features, and network topology [2], [3], [30], [31]. 

Once extracted, these features are then input into conventional machine learning models, 

including regression models, regression trees, or Support Vector Machines, to perform tasks 
such as popularity prediction [32]. A primary limitation of this approach is its heavy reliance 

on domain expertise for effective feature engineering, which can restrict the generalizability 

of learned features to new or evolving contexts. Moreover, these methods often employ static 
feature representations, which struggle to fully capture the inherently dynamic nature of 

information cascades [3], [8], [30]. 

4.1.2. Deep Learning Methods 

Deep learning methods represent a powerful paradigm for modeling and predicting 
information cascades, offering an alternative to traditional approaches by reducing the need 

for extensive feature engineering [33], [34]. Graph Neural Networks are particularly 

prominent within this category, effectively leveraging and learning from the structural 
information embedded within social graphs [35], [36], [37]. GNN-based models can 
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integrate various node attributes, including user profiles and complex structural features, 

directly from cascade graphs, thereby capturing both the structural and sequential aspects of 

propagation paths [16], [38], [39], [40]. Beyond GNNs, deep learning also encompasses 
other architectures such as recurrent neural networks for modeling sequential cascade data 

[8], and topological recurrent neural networks designed to handle dynamic directed acyclic 

graphs to better represent cascade structures [41]. These methods enable the learning of latent 
representations and can integrate diverse data modalities, including text and network 

structures, in an end-to-end fashion for cascade prediction [33], [42]. 

4.2.3. Real-time Diffusion Analysis Methods 

Real-time diffusion analysis methods are designed to detect and track cascade 
behavior as it unfolds within social media streams. These approaches often utilize 

continuous-time diffusion models or stream data mining techniques to analyze temporal 

irregularities and the dynamic states of users and cascades [2], [43], [44], [45], [46]. The 
primary objective is to provide early detection of significant events or emerging trends, such 

as identifying “bursty” keywords or monitoring the lifecycle of information propagation 

[44]. Techniques in this category are specifically engineered to handle high-velocity data 

streams, offering immediate insights into cascade evolution. This capability is crucial for 
applications demanding rapid responses, including real-time event detection, influence 

maximization on dynamic social streams, and monitoring viral content [43], [47], [48], [49], 

[50], [51], [52]. 

4.2.4. Point Process-based Methods 

Point process-based methods, especially those employing Hawkes processes, are 

critical for modeling discrete, inter-dependent events over continuous time, making them 
highly suitable for understanding information cascades in social media [53], [54], [55]. 

Hawkes processes are characterized as self-exciting point processes, where the occurrence 

of a past event increases the likelihood of future events [56], [57]. This self-exciting property 

effectively captures the “rich get richer” phenomenon frequently observed in information 
diffusion, where early adoptions stimulate subsequent ones [54]. These models are employed 

to predict the final size of a cascade, estimate parameters for social influence, and infer the 

probability of an inactive node becoming activated [31], [58], [59]. Advanced variations 
include Network Hawkes processes, which integrate user connection strengths, and dynamic 

Hawkes process models that capture the evolving states of communities influencing diffusion 

processes [59], [60]. These methods are particularly effective for accurately modeling the 
temporal burstiness of events and their intricate interdependencies [59]. 

4.2.5. Hybrid Methods 

Hybrid methods combine components from various modeling paradigms to harness 

their individual strengths and address their respective limitations, ultimately leading to more 
robust and accurate cascade detection and prediction. For example, some hybrid models 

integrate traditional machine learning classifiers with ensemble techniques like bagging and 

boosting to enhance anomaly detection in social networks [61]. Other approaches merge 
point process-based generative models with deep learning architectures, allowing for the 
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integration of diverse features (e.g., content, network structure, exogenous signals) with 

sophisticated temporal modeling capabilities [62], [63]. Multi-modal hybrid frameworks can 

integrate distinct information sources such as fundamental cascade sequences, user social 
graphs, and sub-cascade graphs, often leveraging transformers or other deep learning models 

to effectively fuse these disparate clues and improve predictive performance. This integrated 

approach facilitates a more comprehensive understanding of the cascading process by 
simultaneously considering structural, temporal, and content-based information [19]. 

4.2. Comparison of techniques used for detection of cascade behaviour in social 

networks.   

Table-1 shows the comparison of deep learning, real-time diffusion, point process-
based, and hybrid techniques for cascade detection on the basis of description, mechanism, 

strength and weakness.This comparative analysis reveals that while individual techniques 

excel in specific dimensions—such as the temporal fidelity of point process-based methods 
or the structural capture of deep learning approaches—hybrid methods predominantly 

mitigate their collective drawbacks by fusing complementary modalities, though they 

introduce complexities in integration and computational overhead [3], [39], [69]. Future 

research directions should prioritize scalable hybrid architectures that incorporate 
continuous-time dynamic graph neural networks to enhance real-time cascade detection 

while preserving interpretability [3], [19], [70]. Additionally, advancements in multi-task 

learning frameworks that simultaneously optimize cascade prediction and user classification 
could further elevate detection efficacy by integrating spatiotemporal data fusion [3]. Such 

frameworks could also leverage foundational large language models to capture universal 

propagation patterns and variability in user behaviors, thereby improving generalization 
across diverse social media platforms [71].  

Conclusion 

The present study aims to provide a comprehensive comparison of cascade detection 

techniques on social media networks, highlighting their strengths, limitations, and potential 
for hybrid advancements to inform future methodological developments. The study used 

secondary data for the justifications of the framed objectives. The study has identified five 

major techniques which are used for detection cascade behaviour in social networks, they 
include; feature-based models, deep learning architectures, real-time diffusion analysis, point 

process-based approaches, and hybrid methods, each offering distinct advantages in 

capturing structural, temporal, and content-driven aspects of cascade propagation. 
Nevertheless, the evolution toward deep learning integrations, such as Hawkes process-based 

networks and graph representation learning, promises enhanced handling of temporal 

dynamics and cascade uncertainties, fostering more precise predictions of information 

popularity than other models. The author has revealed that there is a need to  prioritize 
scalable hybrid architectures that incorporate continuous-time dynamic graph neural 

networks to enhance real-time cascade detection while preserving interpretability. 

Furthermore, the results confirm that there is a need for multi-task learning frameworks that 
jointly optimize cascade prediction, user influence estimation, and content virality 
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assessment to bolster robustness against evolving disinformation dynamics on social media 

platforms. 

 
 

 

 
 

 

 

Table-1: Shows the comparison of techniques used for detection of cascade behaviour in 
social networks 

Technique Category Description & Mechanisms Strengths Weaknesses 

Feature Based 

Methods 

Extract specific, hand-crafted features 

(structural, temporal, user, content, network 
topology [2], [3], [30], [31]) which are then fed 

into conventional machine learning models 

(e.g., regression, SVM) to perform tasks such 
as popularity prediction [32]. 

Enables popularity prediction [32]. Relies heavily on domain expertise for feature engineering, 

restricting generalizability [3], [8], [30]; uses static feature 
representations, struggling to capture dynamic cascade 

nature [3], [8], [30]. 

Deep Learning 

Methods 

Employs deep neural networks, especially 

Graph Neural Networks [35], [36], [37], to 

learn latent representations from social graphs, 
integrating node attributes and complex 

structural features to capture structural and 

sequential propagation aspects [16], [38], [39], 
[40]. Includes RNNs and topological recurrent 

neural networks for dynamic graphs [8], [41]. 

Reduces the need for extensive feature 

engineering [33], [34]; effectively 

leverages and learns from graph 
structural information [35], [36], [37]; 

captures both structural and sequential 

aspects of propagation paths [16], [38], 
[39], [40]; enables learning of latent 

representations and integrates diverse 

data modalities in an end-to-end fashion 
for cascade prediction [33], [42]. 

Often models cascades from a singular perspective, 

overlooking complementary information between modalities 

[19]; fails to capture topological structure features and 
dynamic changes of information diffusion [40]; struggles 

with imbalanced cascade distribution and cascade graph 

dynamics [39]; lacks supervision for future information 
prediction, leading to suboptimal performance [19]; suffers 

from “black-box” interpretability issues [8]; higher 

computational cost compared to feature-based and 
generative models [8]; prone to issues with model tuning, 

hyper-parameter selection, and overfitting [8]. 

Real-time Diffusion 

Analysis Methods 

Utilizes continuous-time diffusion models or 

stream data mining techniques to detect and 
track cascade behavior as it unfolds within 

social media streams, analyzing temporal 

irregularities and dynamic states of users and 

cascades [2], [43], [44], [45], [46]. Aims for 
early detection of significant events or 

emerging trends [44]. 

Specifically engineered to handle high-

velocity data streams, offering 
immediate insights into cascade 

evolution [43], [47], [48], [49], [50], 

[51], [52]; crucial for applications 

demanding rapid responses like real-
time event detection and viral content 

monitoring [43], [47], [48], [49], [50], 

[51], [52]. 

Processing vast, noisy, unstructured, dynamic, and 

heterogeneous social data is challenging, leading to methods 
that are often slow, expensive, and rely on sample sizes with 

biases [64]; real data reveals phenomena that pose 

significant challenges to modeling [65]; real-world diffusion 

data is complex, potentially incomplete, and lacks ground 
truth, exacerbating analysis challenges [66]. 

Point Process-based 

Methods 

Models discrete, inter-dependent events over 

continuous time using point processes, 

primarily Hawkes processes [53], [54], [55]. 

Highly suitable for understanding 

information cascades [53], [54], [55]; 

effectively captures the “rich get richer” 

Often use simple intensity functions and make strong 

assumptions about diffusion mechanisms [68]; struggle to 

capture irregular time intervals and event order from 
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These self-exciting processes capture how past 

events increase the likelihood of future ones 

[56], [57]. 

phenomenon [54]; predicts final 

cascade size, estimates social influence 

parameters, and infers user activation 
probability [31], [58], [59]; accurately 

models temporal burstiness and 

intricate interdependencies of events 

[59]; provides interpretable models of 
underlying diffusion mechanisms [67]. 

discrete-time domains [68]; cannot fully exploit DAG 

diffusion processes or long-term dependencies due to 

recurrent model limitations [68]; may not intrinsically 
capture trends of short-term outbreaks leading to popularity, 

and RNN-based models can suffer from error accumulation 

with large cascades [68]; generative models are often not 

trained for prediction, leading to suboptimal performance in 
that regard [67]. 

Hybrid Methods 

Combines components from various modeling 

paradigms to leverage individual strengths and 
address respective limitations for more robust 

and accurate cascade detection and prediction. 

Integrates elements like traditional ML 

classifiers with ensemble techniques [61] or 
point process generative models with deep 

learning architectures [62], [63]. 

Aims for more robust and accurate 

cascade detection and prediction by 
harnessing individual strengths and 

addressing limitations [61], [62], [63]; 

enhances anomaly detection in social 

networks [61]; integrates diverse 
features with sophisticated temporal 

modeling capabilities [62], [63]; 

facilitates a more comprehensive 
understanding of the cascading process 

by simultaneously considering 

structural, temporal, and content-based 
information [19]; can improve 

predictive performance by fusing 

distinct information sources [19]. 

While designed to address limitations of individual 

components, the provided text does not explicitly state 
inherent weaknesses of hybrid methods with citations. 
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