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Abstract

This study systematically reviews and compares techniques for detecting cascade
behavior in social media networks, emphasizing their underlying modeling paradigms. We
categorize these into five main approaches: feature-based methods, deep learning methods
(including Graph Neural Networks), real-time diffusion analysis methods, point process-
based methods (particularly Hawkes processes), and hybrid methods. Feature-based
techniques, while enabling popularity prediction, are limited by their reliance on domain
expertise for feature engineering and static representations. Deep learning methods offer
advantages in learning latent representations and capturing complex structural and sequential
information without extensive feature engineering, but often face challenges with
interpretability, computational cost, and handling imbalanced data. Real-time diffusion
analysis excels in processing high-velocity data streams for immediate insights into
unfolding cascades, crucial for rapid response applications, yet struggles with the inherent
noise and complexity of real-world social data. Point process-based methods, especially
Hawkes processes, are highly effective for modeling inter-dependent events over continuous
time and capturing the “rich get richer” phenomenon in diffusion, although they can be
limited by strong assumptions and difficulties in exploiting long-term dependencies. Hybrid
methods combine the strengths of these individual technigques, enhancing accuracy and
robustness by fusing complementary information modalities. The findings indicate an
evolution towards deep learning integrations, such as Hawkes process-based networks and
graph representation learning, promising improved handling of temporal dynamics and more
precise predictions. Future research should prioritize scalable hybrid architectures
incorporating continuous-time dynamic graph neural networks to enhance real-time cascade
detection while maintaining interpretability and developing multi-task learning frameworks
for comprehensive prediction and influence estimation.
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Introduction

The proliferation of online social media platforms has revolutionized information
dissemination, enabling rapid and widespread sharing of content, ideas, and behaviors. This
phenomenon has given rise to “cascade behavior,” where information or actions propagate
through a network of connected individuals. The individuals are connecting through social
ties, thereby forming the structural backbone for the emergence and propagation of cascade
behavior in social media networks [1], [2]. A cascade effect in social networks refers to the
sequential activation or adoption of an item (e.g., a piece of information, a trend, or a
behavior) by individuals, where each adoption is influenced by previous adoptions within
the network . This can be conceptualized as a directed graph where nodes represent users and
edges represent relationships, with activation spreading from one user to their inactive
neighbors [3]. Such cascades are often represented as rooted, directed, time-stamped trees
that record the spread of a single diffusion event [4]. Information cascades are characterized
by their temporal evolution, where the state of nodes changes over time from inactive to
activated (e.g., retweeting a message) [5]. The structure of these cascades, which can include
loops and reciprocal edges, provides valuable insights into the diffusion process [6]. These
diffusion processes are ubiquitous in self-organized social systems, facilitating news
propagation, the dissemination of innovative technologies, and even the spread of epidemics.
The generation of cascade effects in social media is a complex interplay of various
endogenous and exogenous factors. A fundamental mechanism involves users sharing
content with their contacts, leading to a multiplicative spread that can reach a vast number
of people, often distant from the original source [7]. This user-driven re-sharing can be
triggered by social influence, where individuals are motivated by the actions of their peers,
or by external influences such as burst events [8]. Some cascades exhibit a “broadcast”
pattern, where a single node accounts for a large portion of the diffusion, akin to a breadth-
first search. In contrast, “viral” cascades are driven by word-of-mouth mechanisms,
resembling a depth-first search, where each node contributes a smaller fraction to the overall
spread [9]. Factors such as the content’s novelty, emotional appeal, and the characteristics of
the spreading users (e.g., follower count, past engagement) significantly influence the
likelihood and extent of a cascade [10], [11], [12]. The “diffusion protocols”—the social
exchanges that enable information transmission—also play a crucial role in how cascades
grow. These protocols can range from simple reshares to more complex interactions, with
the effort required to participate impacting a cascade’s growth [13]. Network structure, along
with nodal activity, has been shown to influence the cascade threshold and the spreading
capacity of social media [14].
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Detecting cascade behavior in social networks is critical for a broad range of real-
world applications and holds significant importance in understanding online dynamics [8].
One primary application is the early detection of rumors and misinformation. ldentifying
viral rumors allows for crisis management and the implementation of mitigation strategies
to prevent their widespread impact, especially when the information is false [15]. This is
particularly relevant in scenarios like pandemics, where misinformation can hinder effective
public health responses and cause widespread confusion [16]. Beyond mitigating negative
impacts, cascade detection is vital for influence prediction, enabling the evaluation of
information strategies and identification of content likely to achieve significant user
engagement. This has direct applications in viral marketing and advertising, where
understanding what makes content go viral can inform campaign design [8], [12]. Moreover,
analyzing cascade patterns can provide insights into behavioral patterns and the propagation
of ideas, which is valuable for areas like humanitarian efforts and public policy [12], [17].
The ability to predict cascade outcomes, such as their size and reach, can help in identifying
hot information, optimizing resource allocation, and even minimizing destructive cascades
or keeping them within specified ranges [6], [13], [18], [19]. The increasing scale and speed
of information diffusion on social media make cascade prediction and detection an essential
tool for navigating the complexities of the digital information landscape [4].

The cascade behaviour on social networks is detected by employing a variety of
techniques, and each technique represents a distinct approach to modeling and identifying
the propagation patterns of information diffusion across social networks. its essential to
screen these techniques systematically to assess their efficacy, scalability, and applicability
across diverse social media contexts, thereby enabling informed selection for specific
detection scenarios.The present study was conducted to provide a comprehensive
comparison of techniques employed for detecting cascade behavior on social media
networks, with a particular emphasis on the role of diffusion protocols and multi-scale graph-
based approaches in capturing diverse propagation patterns.

Objectives of Study
The present study was conducted under following objectives;

i. To examine the existing techniques for detecting cascade behavior in social
networks.

ii.  To categorize the cascade detection techniques based on their underlying modeling
paradigms, such as feature-based, graph neural network-driven, and real-time
diffusion analysis approaches.

iii.  To provide the weakness of each technique in terms of computational efficiency,
handling of temporal dynamics, and robustness to sparse network data.

Research Methodology

This study employs a secondary data-based research methodology, specifically a systematic
literature review, to provide a comprehensive comparison of techniques utilized for detecting
cascade behavior on social media networks. The initial phase involved a comprehensive

.
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literature search across multiple academic databases to identify relevant studies focusing on
cascade detection techniques in social media. Key databases included, but were not limited
to, IEEE Xplore, ScienceDirect, Springer, ACM Digital Library, and Scopus, chosen for their
extensive coverage of computer science, information systems, and social science research

[20], [21], [22].

A carefully constructed search string was utilized, combining keywords and Boolean
operators to maximize the retrieval of pertinent studies. The core keywords encompassed
terms such as “information cascade,”‘cascade detection,”cascade prediction,”*‘social
media,”‘social networks,”*diffusion models,”‘propagation,”algorithms,”“techniques,” and
“comparison.” The search was further refined by prioritizing recent publications to ensure
currency, and restricting results to peer-reviewed journal articles and conference proceedings
published in English[22]. Backward snowballing, wherein references from existing
systematic reviews and highly cited papers were examined, was also employed to identify
additional relevant primary studies.

To ensure the relevance and quality of the selected literature, specific inclusion and exclusion
criteria were applied during the screening process:
e Inclusion Criteria:

a) Studies presenting novel techniques or comparative analyses for detecting,
predicting, or modeling information cascades in social media or online
networks.

b) Papers discussing the theoretical underpinnings, empirical evaluations, or
practical applications of such techniques.

c) Studies published in peer-reviewed journals, reputable conference
proceedings, or as comprehensive survey articles (e.g., [8]).

d) Research clearly defining the methodology, datasets used, and evaluation
metrics for cascade detection or prediction.

e Exclusion Criteria:

a) Studies not directly related to cascade behavior or social media.

b) Short papers, editorials, opinion pieces, or master’s/doctoral theses (unless
they were subsequently published in a peer-reviewed venue).

c) Studies primarily focused on general social network analysis without
specific emphasis on cascade detection or prediction [23], [24].

d) Duplicate publications.

From each selected study, relevant information was systematically extracted and recorded.
This included:

a) Bibliographic Details: Author(s), year of publication, title, and venue.

b) Cascade Detection/Prediction Technique: Name, type (e.g., feature-driven, point

process-based, deep learning-based), and underlying model [3].

c) Problem Addressed: Specific aspect of cascade behavior the technique aims to
solve (e.g., early detection, size prediction, source identification).

.
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d) Dataset Characteristics: Type of social media platform, size, and nature of the data
(e.g., text, images, temporal information).

e) Evaluation Metrics: Performance indicators used to assess the technique (e.g.,

accuracy, precision, recall, F1-score, AUC).

f) Key Findings: Main results, advantages, and contributions of the technique.

g) Limitations: Identified shortcomings, challenges, and areas for improvement.

h) Comparative Aspects: If the paper included a comparison with other techniques,

the details of that comparison.

The extracted data underwent a rigorous analysis and synthesis process to fulfill the
objectives of this chapter. A thematic analysis approach was employed to categorize and
group similar techniques, identifying common themes, methodologies, and challenges [25].
A comparative analysis was then performed across the identified technigques, evaluating their
efficacy, scalability, computational complexity, and applicability across diverse social media
contexts and cascade types [26], [27], [28]. This involved assessing strengths and
weaknesses, underlying assumptions, and suitability for different application scenarios (e.g.,
misinformation detection, trend prediction) [23], [29].

Results

The present review presents a systematic categorization of cascade detection
techniques based on their underlying modeling paradigms, such as feature-based, graph
neural network-driven, and real-time diffusion analysis approaches. In the following
subsections the major techniques used for detecting cascade behavior in social media
networks are described.
4.1. Techniques used for detection of cascade behaviour in social networks.
4.1.1. Feature Based Methods

Feature-based methods operate by extracting specific, hand-crafted features from
raw data associated with information cascades. These features can include structural
properties of the cascade graph, temporal attributes (such as publication and observation
times), characteristics of users, content features, and network topology [2], [3]. [30], [31].
Once extracted, these features are then input into conventional machine learning models,
including regression models, regression trees, or Support Vector Machines, to perform tasks
such as popularity prediction [32]. A primary limitation of this approach is its heavy reliance
on domain expertise for effective feature engineering, which can restrict the generalizability
of learned features to new or evolving contexts. Moreover, these methods often employ static
feature representations, which struggle to fully capture the inherently dynamic nature of
information cascades [3], [8], [30].
4.1.2. Deep Learning Methods

Deep learning methods represent a powerful paradigm for modeling and predicting
information cascades, offering an alternative to traditional approaches by reducing the need
for extensive feature engineering [33], [34]. Graph Neural Networks are particularly
prominent within this category, effectively leveraging and learning from the structural
information embedded within social graphs [35], [36], [37]. GNN-based models can

.
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integrate various node attributes, including user profiles and complex structural features,
directly from cascade graphs, thereby capturing both the structural and sequential aspects of
propagation paths [16], [38], [39], [40]. Beyond GNNs, deep learning also encompasses
other architectures such as recurrent neural networks for modeling sequential cascade data
[8], and topological recurrent neural networks designed to handle dynamic directed acyclic
graphs to better represent cascade structures [41]. These methods enable the learning of latent
representations and can integrate diverse data modalities, including text and network
structures, in an end-to-end fashion for cascade prediction [33], [42].
4.2.3. Real-time Diffusion Analysis Methods

Real-time diffusion analysis methods are designed to detect and track cascade
behavior as it unfolds within social media streams. These approaches often utilize
continuous-time diffusion models or stream data mining techniques to analyze temporal
irregularities and the dynamic states of users and cascades [2], [43], [44], [45], [46]. The
primary objective is to provide early detection of significant events or emerging trends, such
as identifying “bursty” keywords or monitoring the lifecycle of information propagation
[44]. Techniques in this category are specifically engineered to handle high-velocity data
streams, offering immediate insights into cascade evolution. This capability is crucial for
applications demanding rapid responses, including real-time event detection, influence
maximization on dynamic social streams, and monitoring viral content [43], [47], [48], [49].
[50], [51], [52].
4.2.4. Point Process-based Methods

Point process-based methods, especially those employing Hawkes processes, are
critical for modeling discrete, inter-dependent events over continuous time, making them
highly suitable for understanding information cascades in social media [53
Hawkes processes are characterized as self-exciting point processes, where the occurrence
of a past event increases the likelihood of future events [56], [57]. This self-exciting property
effectively captures the “rich get richer” phenomenon frequently observed in information
diffusion, where early adoptions stimulate subsequent ones [54]. These models are employed
to predict the final size of a cascade, estimate parameters for social influence, and infer the
probability of an inactive node becoming activated [31], [58], [59]. Advanced variations
include Network Hawkes processes, which integrate user connection strengths, and dynamic
Hawkes process models that capture the evolving states of communities influencing diffusion
processes [59], [60]. These methods are particularly effective for accurately modeling the
temporal burstiness of events and their intricate interdependencies [59].
4.2.5. Hybrid Methods

Hybrid methods combine components from various modeling paradigms to harness
their individual strengths and address their respective limitations, ultimately leading to more
robust and accurate cascade detection and prediction. For example, some hybrid models
integrate traditional machine learning classifiers with ensemble techniques like bagging and
boosting to enhance anomaly detection in social networks [61]. Other approaches merge
point process-based generative models with deep learning architectures, allowing for the

.
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integration of diverse features (e.g., content, network structure, exogenous signals) with
sophisticated temporal modeling capabilities [62], [63]. Multi-modal hybrid frameworks can
integrate distinct information sources such as fundamental cascade sequences, user social
graphs, and sub-cascade graphs, often leveraging transformers or other deep learning models
to effectively fuse these disparate clues and improve predictive performance. This integrated
approach facilitates a more comprehensive understanding of the cascading process by
simultaneously considering structural, temporal, and content-based information [19].

4.2. Comparison of techniques used for detection of cascade behaviour in social
networks.

Table-1 shows the comparison of deep learning, real-time diffusion, point process-
based, and hybrid techniques for cascade detection on the basis of description, mechanism,
strength and weakness. This comparative analysis reveals that while individual techniques
excel in specific dimensions—such as the temporal fidelity of point process-based methods
or the structural capture of deep learning approaches—hybrid methods predominantly
mitigate their collective drawbacks by fusing complementary modalities, though they
introduce complexities in integration and computational overhead [3], [39], [69]. Future
research directions should prioritize scalable hybrid architectures that incorporate
continuous-time dynamic graph neural networks to enhance real-time cascade detection
while preserving interpretability [3], [19], [70]. Additionally, advancements in multi-task
learning frameworks that simultaneously optimize cascade prediction and user classification
could further elevate detection efficacy by integrating spatiotemporal data fusion [3]. Such
frameworks could also leverage foundational large language models to capture universal
propagation patterns and variability in user behaviors, thereby improving generalization
across diverse social media platforms [71].

Conclusion

The present study aims to provide a comprehensive comparison of cascade detection
techniques on social media networks, highlighting their strengths, limitations, and potential
for hybrid advancements to inform future methodological developments. The study used
secondary data for the justifications of the framed objectives. The study has identified five
major techniques which are used for detection cascade behaviour in social networks, they
include; feature-based models, deep learning architectures, real-time diffusion analysis, point
process-based approaches, and hybrid methods, each offering distinct advantages in
capturing structural, temporal, and content-driven aspects of cascade propagation.
Nevertheless, the evolution toward deep learning integrations, such as Hawkes process-based
networks and graph representation learning, promises enhanced handling of temporal
dynamics and cascade uncertainties, fostering more precise predictions of information
popularity than other models. The author has revealed that there is a need to prioritize
scalable hybrid architectures that incorporate continuous-time dynamic graph neural
networks to enhance real-time cascade detection while preserving interpretability.
Furthermore, the results confirm that there is a need for multi-task learning frameworks that
jointly optimize cascade prediction, user influence estimation, and content virality
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assessment to bolster robustness against evolving disinformation dynamics on social media

platforms.

Table-1: Shows the comparison of techniques used for detection of cascade behaviour in

social networks

Technique Category

Description & Mechanisms

Strengths

Feature Based

Methods

Extract specific, hand-crafted features
(structural, temporal, user, content, network
topology [2], [3]. [30], [31]) which are then fed
into conventional machine learning models
(e.g., regression, SVM) to perform tasks such
as popularity prediction [32].

Enables popularity prediction [32].

— o o e |

Deep
Methods

Learning

Employs deep neural networks, especially
Graph Neural Networks [35], [36], [37], to
learn latent representations from social graphs,
integrating node attributes and complex
structural features to capture structural and
sequential propagation aspects [16], [38], [39],
[40]. Includes RNNs and topological recurrent
neural networks for dynamic graphs [8], [41].

Reduces the need for extensive feature
engineering [33], [34]; effectively
leverages and learns from graph
structural information [35
captures both structural and sequential
aspects of propagation paths [16], [38],
[39]. [40]; enables learning of latent
representations and integrates diverse
data modalities in an end-to-end fashion
for cascade prediction [33], [42].

Real-time  Diffusion
Analysis Methods

Utilizes continuous-time diffusion models or
stream data mining techniques to detect and
track cascade behavior as it unfolds within
social media streams, analyzing temporal
irregularities and dynamic states of users and
cascades [2], [43], [44]. [45], [46]. Aims for
early detection of significant events or
emerging trends [44].

Specifically engineered to handle high-
velocity data  streams, offering
immediate insights into cascade
evolution [43], [47], [48], [49]. [50],

[51], [52]; crucial for applications
demanding rapid responses like real-

time event detection and viral content
monitoring [43], [47]. [48], [49]. [50].

N () S e o e | N N e R N e N P N N

[51], [52].

Point  Process-based

Methods

Models discrete, inter-dependent events over
continuous time using point processes,

Highly suitable for understanding
information cascades [53

primarily Hawkes processes [53

5].leffectively captures the “rich get richer”
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Hybrid Methods

address respective limitations for more robust
and accurate cascade detection and prediction.
Integrates elements like traditional ML
classifiers with ensemble techniques [61] or
point process generative models with deep
learning architectures [62], [63].

These self-exciting processes capture how pastphenomenon  [54]; predicts finalc
events increase the likelihood of future onesicascade size, estimates social influencejc
[56], [57]. parameters, and infers user activation|r
probability [31], [58], [59]; accurately|c

models  temporal  burstiness  andje

intricate interdependencies of events)y

[59]; provides interpretable models ofit

underlying diffusion mechanisms [67]. |t

Combines components from various modelingl/Aims for more robust and accurate)\
paradigms to leverage individual strengths andicascade detection and prediction by
i

harnessing individual strengths and
addressing limitations [61
enhances anomaly detection in social
networks [61]; integrates diverse
features with sophisticated temporal

modeling  capabilities [62], [63];
facilitates a more comprehensive

understanding of the cascading process
by simultaneously considering
structural, temporal, and content-based

information  [19]; can improve
predictive performance by fusing

distinct information sources [19].
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